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Role of the Knudsen layer in determining surface
reaction rates based on sticking coefficients
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A theory on weakly rarefied low-Mach-number flows with surface reactions based on
small sticking coefficients was formulated for a binary gas mixture with an irreversible
surface reaction, and then extended to a multicomponent mixture with multi-step
surface reactions for the situation when all chemically active species are small in
concentration compared to a major inert species. Particular interest was placed on the
interaction between the Knudsen layer and the surface reactions. Results show that
the Knudsen layer modifies not only the incident flux of the molecules striking the
surface but also the temperature-sensitive sticking coefficients, and consequently the
surface reaction rates. The surface reactions in turn modify the flow structure in
the Knudsen layer through the non-zero net flux at the surface. The rate expressions
for the surface reactions based on sticking coefficients were derived, and the slip
boundary conditions for the temperature and the species concentration suitable for
application were established. The widely used Motz–Wise correction formula for
the surface reaction rate was revised and the underlying assumptions leading to its
derivation were shown to be inappropriate.

1. Introduction
Recent interests in materials synthesis and small-scale phenomena have rekindled

research in slow rarefied flows (Cercignani 2005). For example, in flow processes
involving low-pressure chemical vapour deposition (LPCVD), in which gas-phase
materials are deposited on solid-phase substrates through surface reactions, the
characteristic dimension of the flows could become comparable to the mean free
path of the gas. As a consequence, the Knudsen number Kn, which measures the
(inverse) ratio of these two dimensions, could be in the range of 10−3 <Kn < 10−1 in
prevalent operational conditions, and as such renders the flows to be weakly rarefied.
Consequently, it is necessary to include effects of gas rarefaction on the flow field as
well as the surface reactions in the description of the flow and its control.

The study of rarefied flows generally requires kinetic description in terms of the
distribution function of gas molecules and the Boltzmann equation which describes
the evolution of the distribution function in space and time (Chapman & Cowling
1970; Cercignani 1975). For a weakly rarefied flow bounded by a surface, the flow
is continuous except for the thin Knudsen layer next to the surface within which
collision between the molecules is less frequent than that between the molecules and
the surface. This causes the velocity distribution of the molecules in the Knudsen
layer to be generally non-Maxwellian. In order to account for effects of the Knudsen

† Email address for correspondence: cklaw@princeton.edu



114 P. Zhang and C. K. Law

layer, studies of weakly rarefied flows are conventionally based on the framework
of continuum mechanics, but with appropriate boundary conditions, namely slip
boundary conditions, applied at the surface. Consequently, identification of these
boundary conditions is frequently the primary task in such studies, and has been
extensively performed for non-reactive flows composed of simple gases (Albertoni,
Cercignani & Gotusso 1963; Loyalka & Ferziger 1967, 1968; Siewert & Sharipov
2002) and gas mixtures (Ivchenko & Yalamov 1971; Loyalka 1971; Zharov 1972;
Shen 1983; Ivchenko, Loyalka & Tompson 2007).

The presence of surface reactions further complicates the description of the weakly
rarefied flows due to the intrinsic interaction between the Knudsen layer and the
surface reactions. Specifically, the surface reactions affect the structure of the Knudsen
layer through a non-trivial net mass flux at the surface, which in turn affects the slip
boundary conditions. Conversely, the nature of the Knudsen layer also influences
the surface reaction rates in that, while continuum description implies Maxwellian
distribution of the gas molecules and thermal equilibrium between the surface and
the gas molecules striking it, the surface reaction rates are fundamentally affected by
the non-Maxwellian distribution of the molecules.

Studies of the interaction between the Knudsen layer and surface reactions usually
rely on the specific surface reaction adopted. As a notable example of such studies,
the evaporation and condensation occurring between a liquid surface and its vapour
(or vapour–gas mixture) have been extensively studied as a special class of surface
reactions (Pao 1971a,b; Sone 2006). Another important situation, investigated by
Kogan & Makashev (1972), is that of a binary gas mixture undergoing the surface
reaction lAA(s) � lBB(s), in which A(s) and B(s) are adsorbates, and lA and lB
the respective stoichiometric coefficients. This reaction is of fundamental interest
as it simulates the rate-controlling reaction in Langmuir–Hinshelwood surface
reaction kinetics (Kee, Coltrin & Glarborg 2003), in which the adsorbates are
assumed to be in equilibrium with the corresponding gas molecules such that
the reactions between the adsorbates are assumed to be relatively slow and rate
controlling.

The present study considers another important situation, in which the surface
reactions are described via the so called sticking coefficient (also known as the
sticking probability), which is defined based on the facts that collisions between
molecules and the surface are needed to initialize surface reactions, and that not all of
the collisions result in reaction. Consequently, the sticking coefficient is the probability
of a gas-surface collision resulting in a reaction such that the surface reaction rate
can be expressed as the number flux of the molecules hitting on the surface times
the sticking coefficient. Due to its simple and clear physical definition, the sticking
coefficient formalism is widely used in practice to describe many elementary or
semi-empirical surface reactions as long as they involve only one gaseous reactant
(Kee et al. 2003).

In view of the above considerations, the present study aims to obtain reaction rate
expressions for multicomponent gas mixtures with surface reactions based on sticking
coefficients, and establish relevant slip boundary conditions. In the next section, we
shall present further theoretical considerations of the problem, and consequently
identify the appropriate theoretical approach and important factors for a satisfactory
characterization of the problem. Mathematical formulation will then be given in
succeeding sections, which are followed by the derivation of analytical results and
their comparison with previous theoretical results.
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2. Theoretical considerations
To identify the theoretical approach to the present problem, we first note that

analyses have been conducted without actually solving the Boltzmann equation in
the Knudsen layer (Scott 1973; Gupta, Scott & Moss 1985; Xu & Ju 2006). While
these efforts are comparatively simple in the analysis, the formulations contain two
conceptual difficulties as pointed out by Kogan (1969): the actual flow in the Knudsen
layer is distorted by neglecting the variation of the distribution function across it, and
the formulation becomes overspecified by introducing the slip boundary condition
for pressure. Furthermore, we recognize that the solution of the Boltzmann equation
in the Knudsen layer is crucial to the correct determination of the surface reaction
rate because of the non-Maxwellian characteristics of the molecules incident on the
surface. Consequently, a conceptually rigorous approach (Kogan & Makashev 1972)
is adopted in the present study. Specifically, the Boltzmann equation is solved in
the Knudsen layer and its solution is then asymptotically matched to the Chapman–
Enskog solution (Chapman & Cowling 1970; Kogan 1969) external to it in order to
determine the slip boundary conditions and the physical quantities in the Knudsen
layer.

We next recognize that the solution of the Boltzmann equation in the Knudsen layer
strongly depends on the specification of the kinetic boundary conditions that describe
the interaction law between the molecules and the surface. The interaction law is
usually expressed as the relation between the distribution functions of the incident
and the reflected molecules. Among the various kinetic boundary conditions, the
most widely used one is the non-drift Maxwellian distribution function (Kogan 1969),
obtained by assuming that the molecules striking the surface reach thermal equilibrium
with the surface and then are randomly emitted from it with no macroscopic velocity.
The absence of a macroscopic velocity obviously underestimates the number flux of
the reflected molecules and consequently affects the surface reaction rate, which can be
also defined as the difference between the number flux of the molecules incident on the
surface and that of the molecules reflected from it. The kinetic boundary condition
was improved by Nocilla (1963) by introducing certain macroscopic velocity and
temperature that are different from those of the surface in order to reconcile his
experimental results (Nocilla 1961). In the present study, we shall therefore adopt
Nocilla’s kinetic boundary condition because it offers a more realistic description of
the gas-surface interaction without substantially increasing the mathematical difficulty.
It is also noted that a physically significant kinetic boundary condition model was
proposed by Cercignani & Lampis (1971), although its application to the present
problem is too challenging in mathematics.

Another important factor in the formulation is the modelling of the collision
integrals in the Boltzmann equation for multicomponent mixtures. From the
mathematical viewpoint, this is the main difficulty in solving the Boltzmann equation.
The most widely used model for the collision integral of simple gases is the BGK model
proposed by Welander (1954) and Bhatnagar, Gross & Krook (1954). Subsequently,
various models were proposed for binary (Sirovich 1962; Hamel 1965; Boley & Yip
1972) and multicomponent mixtures (Garzó, Santos & Brey 1989; Andries, Aoki &
Perthame 2002). For the present formulation we recognize that in many practical
situations, such as those involving air as the oxidizer, a multicomponent mixture
consists of a concentrationally dominant inert, with the chemically active species
existing in dilute concentrations. The kinetics of such a mixture can therefore be
approximated as one in which each chemically active species forms a binary mixture
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with the inert species and the behaviour of the binary mixture can be analysed
independently of other binary systems. The total flux at the surface is then the sum
of the fluxes of the binary mixtures.

In summary, it is recognized that directly solving the Boltzmann equation in the
Knudsen layer with appropriate collision model and kinetic boundary condition is
necessary to obtain the correct slip boundary conditions and surface reaction rates. As
such, we shall first start with a binary mixture which constitutes the theoretical base
for a multicomponent mixture. Following the approach of Kogan & Makashev (1972)
and using Nocilla’s model (Nocilla 1965) for the kinetic boundary condition, we shall
derive a set of analytical solutions for velocity, temperature and species concentration,
with constants to be determined from the surface reaction rates in § 3. The general
expression of the surface reaction rate based on the sticking coefficient is then given
and compared with previous theoretical results, in § 4. The slip boundary conditions
for temperature and concentration, which are suitable for application, are given in § 5.
The results based on binary mixtures are then extended to multicomponent mixtures,
in § 6.

3. Solution of the Boltzmann equation in the Knudsen layer
Asymptotic analysis of weakly rarefied, low Mach number flows is well established

by using the linearized Boltzmann equation and the linearized collision integral for
simple gases (Kogan 1969; Cercignani 2005) and binary gas mixtures (Ivchenko &
Yalamov 1971; Zharov 1972). It is also recognized that (Kogan & Makashev 1972) the
asymptotic scheme is applicable to the situation when surface reactions are present,
as long as the reaction rates are small so that the attendant net flux at the surface
does not substantially affect the structure of the Knudsen layer. As a consequence,
the present analysis can be unified with that of Kogan & Makashev (1972), albeit
with the different surface reaction mechanism and the kinetic boundary condition at
the surface.

3.1. The Boltzmann equation for binary mixtures

We consider the weakly rarefied flow of a binary mixture bounded by a solid surface.
A coordinate system is so established that the steady planar flow only depends on
the coordinates x and y which are parallel and normal to the surface, respectively.
The Boltzmann equation in the absence of external force and with the Hamel’s model
(Hamel 1965) describing the collision integral is given by

ξix

∂fi

∂x
+ ξiy

∂fi

∂y
= Aiini

(
f M

ii − fi

)
+ Aijnj

(
f M

ij − fi

)
, (3.1)

where i, j = 1, 2 and i �= j (similarly hereinafter), fi = fi(x, y, ξi ) is the distribution
function of the ith species of the binary mixture and f M

ii and f M
ij are the local

Maxwellian distribution functions defined as

f M
ii = ni (mi/2πkTi)

3/2 exp[−mi(ξ i − U i)
2/2kTi], (3.2)

f M
ij = ni(mi/2πkTij )

3/2exp[−mi(ξ i − U ij )
2/2kTij ], (3.3)

in which k is the Boltzmann constant and all of the macroscopic hydrodynamic
quantities, such as ni , Ti , Tij , U i and U ij are spatially dependent. mi and ξ i are
respectively the mass and velocity of the ith molecule. ni , Ui and Ti are respectively
the number density, the mean velocity and the temperature of the ith species,
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defined as

ni =

∫
fi dξ i , U i =

1

ni

∫
ξ ifi dξ i , Ti =

1

3kni

∫
mi(ξ i − U i)

2fi dξ i . (3.4)

Tij and U ij are defined as Tij = Ti +2μiμj (Tj −Ti)+mμiμ
2
j (U j −U i)

2/3k, U ij = μiU i +
μj U j , μi = mi/m, μj = mj/m, m =mi +mj. The term involving Aii in (3.1) represents
the self-collision between molecules of the same kind, with 1/(Aiini) indicating
the mean time between two successive collisions. Similarly, the term involving Aij

represents the cross collision between molecules of different kinds, with 1/(Aijnj ) the
corresponding mean collision time.

For a weakly rarefied flow bounded by a sold surface, there exists a Knudsen layer
separating the surface and the external flow described by the outer, Chapman–Enskog
solution of (3.1). Zharov (1972) gave the first two terms of this solution, corresponding
to the Navier–Stokes equation of the external flow:

f
(o)
i = f
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i0 − f

(o)
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R
(o)
i

⎧⎨
⎩

mn(o)R
(o)
i

ρ(o)n
(o)
i A12

c(o)
i · d(o)

i + mi

kT (o)

[
c

(o)
il c

(o)
ir − 1

3
δlr

(
c(o)
i

)2] ∂U
(o)
l

∂xr

+
[

mi

2kT (o)

(
c(o)
i

)2 − 5
2

]
c

(o)
ir

∂lnT (o)

∂xr

⎫⎬
⎭ , (3.5)

where

f
(o)
i0 = n

(o)
i

(
mi

2πkT (o)

)3/2

exp

[
− mi

2kT (o)

(
c(o)
i

)2]
, R

(o)
i = Aiin

(o)
i + Aijn

(o)
j , (3.6)

and we have used Einstein summation for the subscripts l, r = 1, 2, 3 and δlr to
represent the delta function. The superscript (o) denotes the outer solution as well
as the related macroscopic hydrodynamic quantities, which are functions of x and y

and are defined as

n = ni + nj , ρ = mini + mjnj , T = (niTi + njTj )/n, p = nkT , (3.7)

U = (miniU i + mjnj U j )/ρ, d i = ∇
(

ni

n

)
+

(
ni

n
− mini

ρ

)
∇p

p
, ci = ξ i − U, (3.8)

where ni , U i and Ti are the macroscopic variables to be determined. According to
the Chapman–Enskog theory, the second term on the right-hand side of (3.5) is of
O(ε|f (o)

i0 |), where ε is a perturbation parameter corresponding to the small Knudsen
number of the weakly rarefied flow, and will be specified shortly.

Within the Knudsen layer, the Chapman–Enskog-type series solution is not valid.
Instead, we shall seek an inner solution of (3.1) in the linearized form

f
(i)
i = f R

i (1 + ϕi), ϕi = ϕi(x, y, ξ i) = O(ε). (3.9)

The superscript (i) denotes the inner solution and the related macroscopic
hydrodynamics quantities. f R

i is the local Maxwellian distribution function defined as

f R
i = n

(o)
i (x, 0)

[
mi

2πkT (o)(x, 0)

]3/2

exp

[
− miξ

2
i

2kT (o)(x, 0)

]
. (3.10)

The superscript R is used to distinguish the local Maxwellian distribution (3.10) from
(3.2) and (3.3). ϕi is the perturbed distribution function, satisfying |∂ϕi/∂x| = O(ε) and
|∂ϕi/∂y| = O(1), which imply that the distribution function varies more rapidly across
the Knudsen layer than along it. Similarly, the number density and the temperature
in the Knudsen layer can be linearized by

n
(i)
i (x, y) = n

(o)
i (x, 0)[1 + νi(x, y)], T

(i)
i (x, y) = T (o)(x, 0)[1 + τi(x, y)], (3.11)
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where νi =O(ε) and τi = O(ε) are the perturbed number density and temperature,
respectively.

By writing the inner solution in the form of (3.9)–(3.11), it is assumed that the
distribution function inside the Knudsen layer is close to the Maxwellian distribution
up to O(ε), even though it cannot be represented in a Chapman–Enskog series
solution, and that the macroscopic quantities vary with O(ε) across the layer (Kogan
1969). It is noted that n

(o)
i (x, 0) and T

(o)
i (x, 0) do not represent any actual physical

quantities at the surface, y = 0, since the outer solution is only valid outside the
Knudsen layer and cannot be extended to the surface. Nevertheless, these fictitious
quantities are useful in that they reflect the effects of the Knudsen layer on the outer
flow, and that they are the quantities that the outer flow feels from the surface.
Accordingly, the Navier–Stokes equation subject to these quantities is able to provide
proper description to the flow outside the Knudsen layer, and as such they constitute
useful boundary conditions, namely, the slip boundary conditions. One of the primary
objectives of the present study is to obtain these quantities.

We further look for a solution of ϕi in the form of separation of variables (Kogan
1969),

ϕi = φi +
√

hi0ξixψi, (3.12)

which means that the heat and mass transfer aspects of the problem, corresponding
to φi , are separated from those describing the tangential flow, corresponding to ψi .
In the present study, we are interested in the heat and mass transfer that is directly
related to the surface reactions. The problem of the pure tangential flow was studied
by Zharov (1972), yielding the slip boundary condition for the tangential velocity.

Substituting (3.9) and (3.12) into (3.1), separating the terms without
√

hi0ξix from
those containing it, we have

viy

∂φi

∂y1

= −φi + νi +

(
v2

i − 3

2

)
θi + 2viyWi, (3.13)

where

y1 = y/λ, vi =
√

hi0 ξ i , ui =
√

hi0 U i , hi0 = mi/2kT (o)(x, 0), (3.14)

Ri0 = Aiin
(o)
i (x, 0) + Aijn

(o)
j (x, 0), βi0 = Aijn

(o)
j (x, 0)/Ri0, (3.15)

θi = (1 − 2βi0μiμj )τi + 2βi0μiμjτj , Wi = (1 − βi0μj )u
(i)
iy + βi0μj

√
μi/μj u

(i)
jy. (3.16)

In deriving (3.13), we have assumed |U i |/ε ∼ |ξ i | ∼ |ci | ∼ 1/
√

hi0, which physically
means that the flow Mach number is assumed to be of the same order of the Knudsen
number. Furthermore, by noting that 1/Ri0 is of the order of the characteristic time
between two successive molecular collisions, and hence 1/(Ri0

√
hi0) has the physical

meaning of the mean free path of the gas molecules of the ith species, we further
assume that the mean free paths of molecules of different species have the same
value λ=1/(Ri0

√
hi0) = 1/(Rj0

√
hj0). These two assumptions substantially simplify

the problem studied in that we need to consider only one perturbation parameter in
the present formation, namely the Knudsen number defined as Kn = λ/L = ε, where
L is the characteristic length of the flow.

3.2. Integral equations for the perturbed macroscopic variables

Two boundary conditions are needed to solve (3.13), with one specified at the surface,
which is the inner boundary of the Knudsen layer, and the other specified at the outer
boundary of the Knudsen layer in the asymptotic sense. At the surface, we apply
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Nocilla’s model of molecule-surface interaction (Nocilla 1961, 1963):

f
(i)
i (x, y = 0, ξiy > 0) = nir

(
mi

2πkTr

)3/2

exp

[
− mi

2kTr

(
ξ i − U r

i

)2]
, (3.17)

which physically means that the reflected molecules of the ith species are Maxwellian-
like in the velocity distribution. They have a non-zero macroscopic velocity U r

i and
their temperature Tr is different from the surface temperature. Similar to (3.11), we
linearize nir and Tr as

nir (x) = n
(o)
i (x, 0)[1 + νir (x)], Tr (x) = T (o)(x, 0)[1 + τr (x)], (3.18)

where νir = O(ε) and τr = O(ε) are the perturbed number density and temperature of
the reflected molecules at the surface, respectively. Substituting (3.17) and (3.18) into
(3.9) and applying (3.12), we have

ϕi(x, 0, viy > 0) = νir +
(
v2

i − 3/2
)
τr + 2vi · ur

i , (3.19)

and hence

φi(x, 0, viy > 0) = νir +
(
v2

i − 3/2
)
τr + 2viyu

r
iy, (3.20)

which constitutes the inner boundary conditions for (3.13).
Nocilla’s kinetic boundary condition (3.17) is essentially a three-parameter model,

in which Ur
ix , Ur

iy and Tr need to be specified independently while nir is determined
through species conservation at the surface. Following Nocilla (1961), we have
the relation between the macroscopic (mean) velocity of the reflected and incident
molecules:

Ur
iy(x) = −(1 − αn)U

(i)
iy (x, 0), (3.21)

where αn is the accommodation coefficient of the normal velocity and is assumed to
be the same constant for molecules of all kinds. The accommodation coefficient ατ of
the tangential velocity Ur

ix does not affect the present problem, and therefore will not
appear in the formulation. The energy accommodation coefficient αe is introduced to
implicitly determine Tr through αe = (Eii − Eir )/(Eii − Eiw), where Eii and Eir are,
respectively, the energy carried by the incident and reflected molecules of the ith
kind; Eir is equal to Eiw when the reflected molecules are in thermal equilibrium with
the surface.

According to (3.4), the perturbed macroscopic variables νi , τi and u
(i)
iy appearing in

(3.13) and (3.16) are certain integrals of ϕi , given by

νi = π− 3
2

∫
e−v2

i ϕi dvi , τi = −νi +
2

3
π− 3

2

∫
v2

i e
−v2

i ϕi dvi , u
(i)
iy = π− 3

2

∫
viye

−v2
i ϕi dvi ,

(3.22)

and hence

νi = π− 3
2

∫
e−v2

i φi dvi , τi = −νi +
2

3
π− 3

2

∫
v2

i e
−v2

i φi dvi , u
(i)
iy = π− 3

2

∫
viye

−v2
i φi dvi ,

(3.23)

in which all integrations are defined in the entire velocity space, that is, the integration
domain for each velocity component is (−∞, ∞).

Since (3.13) is essentially an integro–differential equation, to facilitate analytical
solution we formally integrate it, subject to its inner boundary condition (3.20), to
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obtain

φi(viy > 0) =

∫ y1

0

[
νi +

(
v2

i − 3

2

)
θi + 2viyWi

]
1

viy

exp

(
−y1 − s

viy

)
ds

+

[
νir +

(
v2

i − 3

2

)
τr + 2viyu

r
iy

]
exp

(
− y1

viy

)
,

φi(viy < 0) =

∫ y1

∞

[
νi +

(
v2

i − 3

2

)
θi + 2viyWi

]
1

viy

exp

(
−y1 − s

viy

)
ds, (3.24)

which when substituted into (3.23) yields

√
π νi =

{
I−1 ∗ νi +

(
I1 − 1

2
I−1

)
∗ θi − 2

(
Wi − ur

iy

)
J1(y1)

+ νirJ0(y1) + τr [J2(y1) − 1
2
J0(y1)]

}
, (3.25)

√
π τi =

⎧⎪⎨
⎪⎩
(

2
3
I1 − 1

3
I−1

)
∗ νi +

(
2
3
I3 − 2

3
I1 + 5

6
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)
∗ θi

− 2
(
Wi − ur

iy

) [
2
3
J3(y1) − 1

3
J1(y1)

]
+ νir

[
2
3
J2(y1) − 1

3
J0(y1)

]
+ τr

[
2
3
J4(y1) − 2

3
J2(y1) + 5

6
J0(y1)

]
⎫⎪⎬
⎪⎭ ,(3.26)

where the special function Jn(y1) and the integral operator In (n is integer) are
respectively defined by

Jn(y1) =

∫ ∞

0

sn exp

(
− s2 − y1

s

)
ds, In ∗ f (y1) =

∫ ∞

0

f (s)Jn(|y1 − s|) ds. (3.27)

Selected properties of Jn and In, which have been repeatedly used to obtain (3.25)
and (3.26), are listed in Appendix A. It is noted that (3.25) and (3.26) are the same as
those derived by Kogan & Makashev (1972) except the terms containing ur

iy , which
are the consequence of using Nocilla’s boundary condition.

The kinetic boundary condition at the outer boundary of the Knudsen layer can be
obtained by asymptotically matching the outer solution (3.5) with the inner solution
(3.9) (Zharov 1972):

ϕi(x, y1 → ∞) = 2hi0ξ i · U (o)(x, 0) + λy1

⎡
⎣
(

∂lnn
(o)
i

∂y

)
y=0

+
(
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2
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)
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⎤
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⎤
⎦ ,

which when substituted into (3.22) yields

νi(∞) = y1Φi, τi(∞) = y1Φ0, Φi = λ

(
∂ ln n

(o)
i

∂y

)
y=0

, Φ0 = λ

(
∂ ln T (o)

∂y

)
y=0

, (3.28)

and

u
(i)
iy (x, ∞) =

√
hi0U

(o)
y (x, 0) − Di0Xi0Xj0

√
hi0λ

−1Φij , (3.29)

where Xi0 = n
(o)
i (x, 0)/n(o)(x, 0), Di0 = m/[2ρ(o)(x, 0)Xi0A12hi0], Φij = −Φji = Φi −Φj .

Since the flow studied is assumed to be of O(ε) Mach number, the pressure gradients
along x and y directions can be neglected (Kogan 1969). Consequently, from the ideal
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gas law, we have

Φ0 = −Xi0Φi − Xj0Φj, Φi = −Φ0 + Xj0Φij , (3.30)

which will be used later.
We next recognize that, in the presence of surface reactions, the surface reaction

rate Rci of the ith species is exactly its flow flux at the surface, which must be a
constant cross the Knudsen layer (Kogan & Makashev 1972). Consequently, we have

Rci = n
(i)
i (x, 0)U (i)

iy (x, 0) = n
(i)
i (x, y)U (i)

iy (x, y) ∼ εn
(i)
i c

(i)
i , (3.31)

which is equivalent to the assumption that the sticking coefficient is of O(ε), as will
be shown later. Since n

(i)
i (x, y) = n(o)(x, 0) + O(ε), the normal velocity U

(i)
iy satisfies

∂U
(i)
iy /∂y =0 up to O(ε2) in the Knudsen layer and hence U

(i)
iy (x, y) =U

(i)
iy (x, ∞)+O(ε2).

Consequently, it is not necessary to establish and solve the integral equation for U
(i)
iy ,

which can be obtained immediately once (3.25) and (3.26) are solved and the surface
reaction rate is determined.

To involve surface reaction in the present mathematical formulation, we assume
that the binary mixture studied consists of a chemically active species and a chemically
inert species, which are respectively denoted by i =1 and i = 2 for clarity. Since the
normal velocity of the inert species vanishes in the Knudsen layer up to O(ε2), we
have

u
(i)
2y(x, ∞) =

√
h20U

(o)
y (x, 0) − D20X20X10

√
h20λ

−1Φ21 = 0, (3.32)

which leads to

U (o)
y (x, 0) = −D20X10X20λ

−1Φ12. (3.33)

Consequently, we have

u
(i)
1y(x, ∞) =

√
h10U

(o)
y (x, 0) − D10X10X20

√
h10λ

−1Φ12 = −
√

h10λ
−1D12Φ12, (3.34)

where D12 = X10X20(D10 + D20) = kT (o)(x, 0)/[A12n
(o) (x, 0)mμ1μ2] is the binary mass

diffusivity affiliated with the Hamel’s model (Hamel 1965).
Substituting (3.34) and (3.32) into (3.16) and applying (3.21), we have(

W1 − ur
1y

)
/Φ12 = −(2 − β10μ2 − αn)

√
h10λ

−1D12, (3.35)(
W2 − ur

2y

)
/Φ21 = β20μ1

√
μ2/μ1

√
h10λ

−1D12. (3.36)

It is noted that (Wi − ur
iy)/Φij is independent of the coordinate y and hence can be

treated as constants when solving the integral equations (3.25) and (3.26). This result
actually can be obtained for other surface reaction systems (Kogan & Makashev
1972) and therefore can be considered to be valid in general.

3.3. Solutions of the perturbed macroscopic variables

By observing (3.25) and (3.26) and the corresponding boundary conditions (3.28), we
can seek solution in the form

νi = Gνi
(y1) + y1Φi + νir , τi = Gτi

(y1) + y1Φ0 + τr, (3.37)

and hence

θi = Gθi
(y1) + y1Φ0 + τr, Gθi

(y1) = (1 − 2βi0μiμj )Gτi
(y1) + 2βi0μiμjGτj

(y1). (3.38)
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Consequently, we have

Gνi
(y1) = π− 1

2

{
I−1 ∗ Gνi

(y1) +
(
I1 − 1

2
I−1

)
∗ Gθi

(y1)

+ 2wiΦijJ1(y1) + Φ0

[
J3 (y1) − 3

2
J1 (y1)

]
}

, (3.39)

Gτi
(y1) = π− 1

2

⎧⎪⎨
⎪⎩
(

2
3
I1 − 1

3
I−1

)
∗ Gνi

(y1) +
(

2
3
I3 − 2

3
I1 + 5

6
I−1

)
∗ Gθi

(y1)

+ 2wiΦij

[
2
3
J3 (y1) − 1

3
J1 (y1)

]
+ Φ0

[
2
3
J5(y1) − 4

3
J3 (y1) + 7

6
J1 (y1)

]
⎫⎪⎬
⎪⎭ , (3.40)

subject to the boundary conditions

G(∞) = −νir , G(∞) = −τr . (3.41)

The constant wi in (3.39) and (3.40) is given by

wi = Xj0/2 −
(
Wi − ur

iy

)
/Φij , (3.42)

which is independent of the coordinate y and is treated as constant, as discussed in
the last section.

Noting the symmetry of (3.39) and (3.40) with respect to Φ0 and Φij , we further
assume

Gνi
(y1) = −gν (y1) Φ0 + 2hνi

(y1) wiΦij , (3.43)

Gτi
(y1) = −gτ (y1) Φ0 + 2hτi

(y1) wiΦij , (3.44)

Gθi
(y1) = −gθ (y1) Φ0 + 2hθi

(y1) wiΦij , (3.45)

in which

gθ = gτ , hτi
= hθi

+ δi[hθi
+(wj/wi)hθj

], δi = 2βi0μiμj/[1 − 2(βi0 +βj0)μiμj ]. (3.46)

Consequently, a set of integral equations for gν , gθ , hνi
and hθi

are obtained as follows:

gν = L1 ∗ gν + M1 ∗ gθ − Y1, gθ = L2 ∗ gν + M2 ∗ gθ − Y2, (3.47)

hνi
= L1 ∗ hνi

+ M1 ∗ hθi
+ X1, hθi

= L2 ∗ hνi
+ M2 ∗ hθi

− δi[hθi
+ (wj/wi)hθj

] + X2,

(3.48)

where L1, L2, M1 and M2 are the integral operators defined as L1 = π− 1
2 I−1,

L2 = π− 1
2 (2I1 − I−1) /3, M1 = π− 1

2 (2I1 − I−1) /2, M2 = π− 1
2 (4I3 − 4I1 + 5I−1)/6. X1,

X2, Y1 and Y2 are functions of y1, defined as X1 = π− 1
2 J1(y1), X2 = π− 1

2 [2J3(y1)

− J1(y1)]/3, Y1 = π− 1
2 [2J3 (y1) − 3J1 (y1)] /2, Y2 = π− 1

2 [4J5(y1) − 8J3 (y1) + 7J1 (y1)] /6.

By writing hνi
and hθi

in the separation form

hνi
(y1) =

δi(wi + wj )

wi(δi + δj )
qν(y1) +

δjwi − δiwj

wi(δi + δj )
hν(y1), (3.49)

hθi
(y1) =

δi(wi + wj )

wi(δi + δj )
qθ (y1) +

δjwi − δiwj

wi(δi + δj )
hθ (y1), (3.50)

equation (3.48) can be transformed into

hν = L1 ∗ hν + M1 ∗ hθ + X1, hθ = L2 ∗ hν + M2 ∗ hθ + X2, (3.51)

qν = L1 ∗ qν + M1 ∗ qθ + X1, (1 + δi + δj )qθ = L2 ∗ qν + M2 ∗ qθ + X2. (3.52)

We have therefore obtained a series of integral equations (3.47), (3.51) and (3.52),
which are exactly the same as those derived by Kogan & Makashev (1972), even
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though the different surface reaction model and the kinetic boundary condition
at the surface are used in their analysis. For the purpose of establishing the
slip boundary conditions, only solutions of the integral equations at y1 = ∞ are
needed, which are given in Kogan & Makashev (1972): gν (∞) = 0.68, gτ (∞) =
−1.25; hν (∞) = 0.82, hθ (∞) = 0.22; qθ (∞) = 0; δi + δj = 0.1 : qν (∞) = 0.950; δi +
δj =0.5 : qν (∞) = 0.976; δi + δj = 2.5 : qν (∞) = 0.978; δi + δj = 12.5 : qν (∞) = 0.978.

In the present problem, to calculate the surface reaction rate, we also need
the solutions at y1 = 0, as will be shown in the next section. Accordingly, the
integral equations (3.47), (3.51) and (3.52) are numerically solved (see appendix B)
to give the following results: gν(0) = 0.39, gτ (0) = −0.77, hν(0) = 0.62, hθ (0) = 0.17;
δi + δj = 0.1 : qν(0) = 0.634, qθ (0) = 0.129; δi + δj = 0.5 : qν(0) = 0.646, qθ (0) = 0.072;
δi + δj =2.5: qν(0) = 0.655, qθ (0) = 0.028; δi + δj =12.5: qν(0) = 0.658, qθ (0) = 0.007.

Consequently, from (3.41), we have

νir = −Gνi
(∞) = gν (∞) Φ0 − 2

[
qν(∞)

δi(wi + wj )

δi + δj

+ hν(∞)
δjwi − δiwj

δi + δj

]
Φij , (3.53)

and

τr = −Gτi
(∞) = gτ (∞)Φ0 − 2hθ (∞)

δjwi − δiwj

δi + δj

Φij . (3.54)

Equation (3.54) is invariant when exchanging the index i and j , as it should be since
it represents the perturbed temperature of the binary mixture. Similarly, from (3.37),
we have

νi(x, 0) − νir = Gνi
(0) = −gν (0) Φ0 + 2

[
qν(0)

δi(wi + wj )

δi + δj

+ hν(0)
δjwi − δiwj

δi + δj

]
Φij ,

(3.55)

and

τi(x, 0) − τr = Gτi
(0)

= −gτ (0)Φ0 + 2

{
qθ (0)

(wi + wj )δi(1 + δi + δj )

δi + δj

+ hθ (0)
δjwi − δiwj

δi + δj

}
Φij .

(3.56)

Based on the above results, we can express the slip concentration and the slip
temperature as

n
(o)
i (x, 0) = nir (1 − νir ), T (o)(x, 0) = Tr (1 − τr ). (3.57)

To calculate the surface reaction rate, we also need to express the concentration and
temperature of the gas molecules at the surface, given by

n
(i)
i (x, 0) = n

(o)
i (x, 0)[1 + νi(x, 0)] = nir [1 + νi(x, 0) − νir ] + O(ε2), (3.58)

T
(i)
i (x, 0) = T (o)(x, 0)[1 + τi(x, 0)] = Tr [1 + τi(x, 0) − τr ] + O(ε2). (3.59)

4. Surface reaction rate based on sticking coefficients
Although chemical kinetics of surface reactions is complicated in nature and is far

from completely understood, it is clear that collisions between gas molecules and a
surface is needed to initiate a reaction. Consequently, a collision theory of surface
reaction rate can be established, similar to that of gas-phase reactions. Specifically,
the surface reaction rate is defined as the number flux of the molecules hitting the
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surface times a sticking coefficient, which is the probability that a collision results in
a reaction and has a value between zero and unity.

In this section, we consider a simple one-step irreversible surface reaction

Mi(g) → Mi(s), (4.1)

where g and s denote the gas phase and surface phase, respectively. According to
definition, the surface reaction rate of Mi is given by

Rci = κJ
(−)
i , (4.2)

where the sticking coefficient κ has the same order of ε in the present assumption of
small surface reaction rate, and J

(−)
i is the number flux of incident Mi striking the

surface, defined as

J
(−)
i = −

∫
ξ i · n<0

f
(i)
i (x, y, ξ i)(ξ i · n) dξ i . (4.3)

Assuming that the incident molecules striking the surface follow the Maxwellian
distribution function and are in thermal equilibrium with the surface, the surface
reaction rate is usually given by:

Rci = κJiw = κniw

√
kTw

2πmi

, (4.4)

where Tw is the surface temperature and niw (similar to nir ) can be determined through
species conservation at the surface. However, as discussed above, this assumption and
hence (4.4) is not correct when a Knudsen layer is present at the surface and as
such the distribution function of the molecules striking the surface is generally non-
Maxwellian.

A correction to (4.4), taking into account the effect of the non-Maxwellian
distribution of molecules in the Knudsen layer, can be obtained by applying (3.9) and
(3.19) in (4.3):

J
(−)
i = −

∫
ξ i · n<0

f R
i (ξ i · n) dξ i −

∫
ξ i · n<0

f R
i ϕi(ξ i · n) dξ i

= −
∫

ξ i · n<0

f R
i (ξ i · n) dξ i −

∫
f R

i ϕi(ξ i · n) dξ i +

∫
ξ i · n>0

f R
i ϕi(ξ i · n) dξ i

= Ji0

(
1 + νir +

√
πur

iy − 2
√

πu
(i)
iy

)
, (4.5)

where

Ji0 = −
∫

ξ i · n<0

f R
i (ξ i · n) dξ i = n

(o)
i (x, 0)

√
kT (o)(x, 0)

2πmi

. (4.6)

Consequently, the corrected surface reaction rate is

Rci = κJi0

[
1 + νir +

√
πur

iy − 2
√

πu
(i)
iy

]
= κJi0

[
1 + νir − (3 − αn)

√
πu

(i)
iy

]
, (4.7)

with the use of (3.21). On the other hand, from (3.31), we have

Rci = −n
(o)
i (x, 0)U (i)

iy (x)[1 + νi(x, 0)] = −2
√

πJi0u
(i)
iy (x)[1 + νi(x, 0)]. (4.8)

Considering (4.7) and (4.8) together and using (3.21), we have

Rci =
κ

1 − κ 3 − αn

2
1

1+νi (x,0)

Ji0(1 + νir ) =
κ

1 − κ 3 − αn

2

Ji0(1 + νir ) + O(ε3), (4.9)

which gives a general expression for the surface reaction rate of (4.1).
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To compare the present result with those previously reported by other investigators,
we apply (3.57) in (4.9), assuming hereafter that the energy accommodation coefficient
is αe = 1, which means Tr = Tw , and neglecting the temperature and concentration
gradients. We thus have

Rci =
κ

1 − κ 3 − αn

2

niw

√
kTw

2πmi

, (4.10)

which has the correction factor 1 − κ(3 − αn)/2 relying on the sticking coefficient κ

and the accommodation coefficient αn for the normal velocity, as compared with (4.4).
Two important limiting results can be obtained from (4.10). For diffusive reflection,

αn = 1 and Ur
iy =0, we have

Rci =
κ

1 − κ
niw

√
kTw

2πmi

, (4.11)

while for specular reflection, αn =0 and Ur
iy = − U

(i)
iy , we have

Rci =
κ

1 − 3κ/2
niw

√
kTw

2πmi

. (4.12)

Neither of them agrees with the widely used formula given by Motz & Wise (1960):

Rci =
κ

1 − κ/2
niw

√
kTw

2πmi

, (4.13)

which can however be obtained from (4.10) by setting the unreasonable value of

αn = 2, which is equivalent to Ur
iy =U

(i)
iy .

To resolve this discrepancy and in view of the extensive adoption of the Motz–
Wise formula, we re-examine Motz & Wise’s derivation as follows (also see Dorsman
& Kleijn 2007). They first derived the number fluxes of the molecules by applying
Meyer’s theory on diffusion (Jean 1925), in which the distribution function of the ith
kind molecules was assumed to be locally Maxwellian and given by

fi = ni

(
mi

2πkT

) 3
2

exp

{
− mi

2kT

[
u2

i + v2
i + (wi − w)2

]}
, (4.14)

and |w| 	 |ci |, in which w is the mean particle transport velocity and ci the mean
random velocity of species i (Motz & Wise 1960). Accordingly, the number fluxes of
the ith kind molecules, which cross the plane z = z0 in the direction of increasing z

and decreasing z, are given by

J +
i =

(
mi

2πkT

) 3
2
∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
n+

i exp

{
− mi

2kT

[
u2

i + v2
i + (wi − w)2

]}
wi dui dvi dwi,

(4.15)

J −
i =

(
mi

2πkT

) 3
2
∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
n−

i exp

{
− mi

2kT

[
u2

i + v2
i + (wi − w)2

]}
wi dui dvi dwi.

(4.16)
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Since ni varies along z, a phenomenological model accounting for this variation is
given by

n
±
i = ni(z0) ∓ λ

wi

ci

(
∂ni

∂z

)
z0

, (4.17)

which leads to

J
±
i =

1

2
ni

(
1

2
ci ± w

)
∓ 1

6
λ

(
∂ni

∂z

)
z0

ci. (4.18)

Finally, they set the plane z = z0 at the surface and obtained

Rci = κJ −
i = κ

{
1

4
nici −

[
1

2
niw − 1

6
λ

(
∂ni

∂z

)
z0

ci

]}

= κ

[
1

4
nici +

1

2
(J −

i − J +
i )

]
= κ

(
1

4
nici +

1

2
Rci

)
, (4.19)

and hence

Rci =
κ

1 − κ/2

1

4
nici =

κ

1 − κ/2
ni

√
kT

2πmi

. (4.20)

It is readily seen that, even if we could neglect the effects of the Knudsen layer on
the molecular fluxes and accordingly express the incident molecular flux by (4.16), it
is not correct to express the reflected molecular flux by (4.15). The reason is that the
normal component of the macroscopic velocity of the reflected molecules from the
surface is not equal to that of the incident molecules towards the surface, as shown
in Nocilla’s experiment and theory (Nocilla 1961, 1963). Furthermore, even for the
special case of specular reflection, the magnitude of the normal velocity remains the
same but its sign changes. In fact, the expression (4.18) is only valid in the flow
region outside the Knudsen layer. To obtain the correct expression for the flux of
reflected molecules from the surface, the molecule-surface interaction law must be
applied. Consequently, the general expression (4.9) or its simplified form (4.10) should
be used.

So far the sticking coefficient is assumed to be a given constant in our discussion
on the surface reaction rate. Actually, it is usually very temperature sensitive, being
described by the Arrhenius law (Kee et al. 2003):

κ ∼ exp

(
− Es

kTm

)
, (4.21)

in which Es is the activation energy of the surface reaction and Tm the temperature of
the molecules striking the surface (Ceyer 1990). In many previous studies, the surface
temperature Tw is used to replace Tm in (4.21) based on the assumption that the
molecules are in thermal equilibrium with the surface. This is obviously not correct
when there is a Knudsen layer attached to the surface, so that Tm is generally different
from Tw , because of the non-equilibrium between the molecules in the Knudsen layer
and the surface. Hu & Glumac (2002) accounted for the temperature jump (or slip)
effect on the surface reaction rate by using Tm = T (o)(x, 0) = Tw(1 − τr ), τr = O(ε), as
shown in (3.57), in the Arrhenius factor, and showed that the surface reaction rates
based on T (o)(x, 0) can be a few times different from that based on Tw:

κ ∼ exp

[
− Es

kTw(1 − τr )

]
= exp

(
− Es

kTw

τr

)
exp

(
− Es

kTw

)
, (4.22)
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since the scaled activation energy Es/kTw is usually much larger than unity and hence
exp(−Esτr/kTw) can be up to O(1).

We note however that, according to definition, Tm = T
(i)
i (x, 0) is generally neither the

surface temperature nor the slip temperature. Moreover, the difference between any
two of these three temperatures is of the order of the Knudsen number. Consequently,
by using (3.59), we have

κ ∼ exp

{
− Es

kTw[1 + τi(x, 0) − τr ]

}
= exp

{
Es

kTw

[τi(x, 0) − τr ]

}
exp

(
− Es

kTw

)
.

(4.23)

Since τr − τi(x, 0) always has the same sign as that of τr but is smaller in magnitude,
as can be easily seen in (3.54) and (3.56), the effect of the Knudsen layer on the
sticking coefficient, which can still be up to O(1), is overestimated in (4.22).

5. Slip boundary conditions for temperature and concentration
In § 3 and § 4, we obtained a set of solutions of the Boltzmann equation and the

corresponding slip boundary conditions, namely (3.57), (3.53) and (3.54), with the
constant wi to be determined by applying specific surface reactions, for example,
(3.42), (3.35) and (3.36), as well as the constant δi related to the physical properties
of molecules. In this section, we shall apply these solutions to some binary mixture
systems of interest, with emphasis on obtaining the simplified and readily applied slip
boundary conditions.

We first consider the situation where there is no surface reaction, implying u
(i)
iy =0

for both species in the binary mixture. Accordingly, from (3.34), we have

Φij = Φi − Φj = λ

(
∂ ln n

(o)
i

∂y
−

∂ ln n
(o)
j

∂y

)
y=0

= 0. (5.1)

It is noted that, in many problems of chemically reacting flows, the mass fraction
Yi = ρi/ρ is frequently used to replace the molar fraction Xi = ni/n for the reason that,
while chemical reaction is a mole-based process, implying the use of Xi , convection
is a mass-based process, implying the use of Yi (Law 2006). Consequently, for binary
mixtures, we have

∂ ln n
(o)
i

∂y
−

∂ ln n
(o)
j

∂y
=

1

XiXj

∂X
(o)
i

∂y
=

1

YiYj

∂Y
(o)
i

∂y
, (5.2)

and then the boundary conditions(
∂X

(o)
i

∂y

)
y=0

= 0 or

(
∂Y

(o)
i

∂y

)
y=0

= 0, (5.3)

which are valid for weakly rarefied binary mixtures in the absence of surface reactions
and were derived by Gupta et al. (1985). The slip boundary condition for temperature
can be obtained from (3.54), (3.57) and (5.1):

T (o)(x, 0) = Tw [1 − gτ (∞)Φ0] = Tw

[
1 + 1.25Kn

(
∂lnT (o)

∂y1

)
y1=0

]
. (5.4)

We next consider the situation where there exists a surface reaction involving a
reacting species 1 and an inert species 2, as we studied in § 3. For species 1, we
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consider (3.34), (4.8) and (4.9) together and have

−u
(i)
1y =

√
h10λ

−1D12Φ12 =
Rc1

2
√

πJ10[1 + ν1(x, 0)]
=

1

2
√

π

κ[1 + ν1r − ν1(x, 0)]

1 − κ(3 − αn)/2
. (5.5)

Applying (5.2) to (5.5), we obtain the slip boundary condition for the mass fraction
Yi ,

Y
(o)
1 (x, 0) =

√
hi0D12

1

Y
(o)
2

(
∂Y

(o)
1

∂y

)
y=0

2
√

π
1 − κ(3 − αn)/2

κ[1 + ν1r − ν1(x, 0)]

=

[
2 − κ(3 − αn)

2κ

]
[1 + ν1(x, 0) − ν1r ]

√
2πm1

kT (o)(x, 0)

D12

1 − Y
(o)
1

(
∂Y

(o)
1

∂y

)
y=0

. (5.6)

A similar result was given by Gupta et al. (1985) as

Cs
A =

2 − γA

2γA

√
2πmA

kTs

Ds
AM

(
∂CA

∂y

)
s

, (5.7)

where the mass fraction of the atom species A is denoted by CA, γA is the
recombination coefficient and DAM the mass diffusivity of the atom A with respect to
its molecules.

Compared with (5.7), (5.6) shows effects of various factors on the slip concentration
Y

(o)
1 (x, 0) in a general, albeit complicated manner. Specifically, Y

(o)
1 (x, 0) depends not

only on its gradient but also the temperature gradient through the slip temperature
T (o)(x, 0). The surface reaction affects Y

(o)
i (x, 0) through both the correction formula

2 − κ(3 − αn), replacing that of Motz–Wise, and the influence factor ν1(x, 0) − ν1r due
to the non-equilibrium distribution of molecules in the Knudsen layer. For species 2,
the boundary condition for Y

(o)
2 is simply given by Y

(o)
2 = 1 − Y

(o)
1 .

The slip boundary condition for temperature is obtained from (3.57) and (3.54):

T (o)(x, 0)

= Tw

[
1 + 1.25Kn

(
∂ ln T (o)

∂y1

)
y1=0

+ 0.44Kn
δjwi − δiwj

δi + δj

1

Y
(o)
i Y

(o)
j

(
∂Y

(o)
i

∂y1

)
y1=0

]
, (5.8)

which is invariant by exchanging i and j . This result shows that T (o)(x, 0) depends
not only on its gradient but also on the concentration gradient as well as the physical
properties of the species through the factor (δjwi − δiwj )/(δi + δj ), which renders (5.8)
different from the similar boundary condition derived by Kogan & Makashev (1972)
for other surface reaction system.

To facilitate application, we shall make some simplifications to the slip boundary
conditions, especially to the local constants wi and δi . We assume that the two
species have the same molecular mass m1 = m2, which implies μ1 =μ2 = 1/2; the
same characteristic collisional constant Aij , namely, A11 = A22 = A12 =A21; and hence√

hi0λ
−1D12 = 1. We then have δi = βi0 = X

(o)
j , (i, j = 1, 2); w1 = 2 − αn, w2 = 0, which

yield

δi(wi + wj )

δi + δj

= X
(o)
j (2 − αn),

(wi + wj )δi(1 + δi + δj )]

δi + δj

= 2(2 − αn)X
(o)
j , (5.9)

δ2w1 − δ1w2

δ1 + δ2

= X
(o)
1 (2 − αn),

δ1w2 − δ2w1

δ1 + δ2

= −X
(o)
1 (2 − αn), (5.10)
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in which the molar fraction X
(o)
i can be replaced by the mass fraction Y

(o)
i since the

molecular masses are assumed to be the same. It is noted that the above approximation
implies δi + δj = 1, and we have qν(∞) ≈ 0.98, qν(0) ≈ 0.65 and qθ (0) ≈ 0.06 by

interpolation. Furthermore, we note that Y
(o)
2 = 1 − Y

(o)
1 can be approximated by unity

only when Y
(o)
1 	 1, which is the prevalent situation for mixtures with a dominant

inert species and shall be used to extend the present results to multicomponent
mixtures, considered in the next section.

6. Extension to multicomponent mixtures
In § 4 and § 5, we studied binary gas mixtures in which the two species have arbitrary

mass (molar) ratio, with one of them undergoing a one-step irreversible reaction at
the surface while the other is chemically inert. In many problems, the number of
gas-phase species is more than two and their surface reactions are usually multi-step
and reversible. It is therefore of practical interest to extend the results based on binary
mixtures to multicomponent and multi-step reaction systems.

As mentioned in § 1, rigorous mathematical treatment of the Boltzmann equation
for a multicomponent mixture is extremely difficult due to the lack of mathematically
tractable models for the collision integrals. Fortunately, in many practical reaction
systems, there exists a major inert species, such as nitrogen in the air, so that the
other chemically active species exist in small concentrations. Consequently the present
problem can be substantially simplified as follows. We assume that each chemically
active species together with the major inert species constitutes a pseudo binary
system, whose behaviour is unaffected by those of the other species. All the species
are considered only when calculating the total flow flux at the surface.

We next recognize that a realistic surface reaction usually consists of some
subprocesses, for example, the adsorption of gas molecules to form adsorbates, the
reaction between adsorbates, and the desorption of the products. Each of these
processes has its own rate so that the overall surface reaction rate depends on each
process in a complicated manner. In general, analytical expressions of the overall
surface reaction rate can be obtained only for some special cases, for which there
exists a rate-controlling (limiting) process (Szekely, Evans & Sohn 1976). For a general
surface reaction system, the reaction rate of each species must be solved numerically
with the given reaction mechanism and the relevant reaction rate constants. A
general surface kinetics formalism involving K surface reactions and I species can be
expressed as (Coltrin et al. 1996),

I∑
i=1

ν ′
i,kMi

kf,k

�
kb,k

I∑
i=1

ν ′′
i,kMi (k = 1, 2, . . . , K), (6.1)

where ν ′
i,k and ν ′′

i,k are respectively the stoichiometric coefficients of the ith species
Mi in the kth reaction as a reactant and a product, and kf,k and kb,k are the forward
and backward reaction rate constants, respectively. Adsorption and desorption are
considered as special reactions since a gas-phase species and its adsorbate can be
regarded as different species.

To extend the sticking coefficient formalism to multi-step reactions, we consider a
special case of (6.1):

akAk(g) +

I−1∑
i=1

ν ′
i,kMi,k(s)

κAk

�
κBk

bkBk(g) +

I−1∑
i=1

ν ′′
i,kMi,k(s), (6.2)
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in which Ak and Bk are respectively the only gas-phase reactant in the forward and
backward reactions of the kth reversible reaction, and κAk

and κBk
are their sticking

coefficients, which can be calculated through the relations (Kee et al. 2003)

kf,k =
κAk

(Γtot )m

√
kT

2πWAk

, kb,k =
κBk

(Γtot )m

√
kT

2πWBk

, (6.3)

where Γtot is the total surface site concentration, m the sum of stoichiometric
coefficients of all of the surface reactants Mi,k(s), and WAk

(WBk
) the molecular weight

of Ak(Bk).
Rigorously speaking, (6.2) is only applicable to those surface reactions in which only

one gas molecule acts as the reactant species. Fortunately, this condition is satisfied for
many surface processes, except those occurring among adsorbates. Nevertheless, these
reactions among the adsorbates influence the gas-phase species indirectly through Γtot

and therefore are assumed not to appear explicitly in the formulation. It is noted that
we have included more than one surface species on both sides of (6.2) so that it can
be used to represent many empirical and semi-empirical mechanisms, and as such it
is not necessarily an elementary surface reaction.

Based on the above considerations, it is straightforward to extend the results
obtained in § 4 to the multicomponent system consisting of (6.2). By applying (4.7),
we have the net reaction rate of species A in the kth reversible reaction

RAk
= κAk

JA0

[
1 + νAr − (3 − αn)

√
πu

(i)
Ay

]
− ak

bk

κBk
JB0

[
1 + νBr − (3 − αn)

√
πu

(i)
By

]
, (6.4)

in which we have assumed that all accommodation coefficients αn have the same
value. JA0 and JB0 are given by replacing i in (4.6) with A and B , respectively. By the
same token, νAr and νBr are given by (3.53). Similar to (4.8), we have

RA =
∑
all A

RAk
= −2

√
πJA0u

(i)
Ay[1 + νA(x, 0)], (6.5)

RB =
∑
all B

RBk
= −2

√
πJB0u

(i)
By[1 + νB(x, 0)], (6.6)

in which the total reaction rate of species A(B) is given by summing over all RAk
(RBk

)
for all reactions containing A(B). νA(x, 0) and νB(x, 0) are given by obtaining νi(x, 0)
by considering together (3.55) and (3.53) and then replacing i in νi(x, 0) with A and
B , respectively. Considering (6.4) and (6.5) together, we have

RAk
= κAk

JA0(1 + νAr ) − ak

bk

κBk
JB0(1 + νBr )

+
3 − αn

2

[
κAk

RA

1 + νA(x, 0)
− ak

bk

κBk

RB

1 + νB(x, 0)

]
. (6.7)

Similar expressions can be obtained for B and other chemically active species.
Consequently, we obtain a set of simultaneous linear equations consisting of all
RAk

and RBk
, which in principle can be solved analytically to obtain their explicit

expressions. Once RA(RB) and therefore u
(i)
Ay(u

(i)
By) are obtained, we can replace u

(i)
iy in

(5.5) by it to establish the slip boundary conditions for the mass fraction YA(YB) and
the temperature, as was shown earlier.
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7. Conclusions and discussion
In the present study we have formulated a theory on the effects of the Knudsen

layer on surface reactions for situations where the weakly rarefied flow consists
of a binary gas mixture with an irreversible surface reaction based on a small
sticking coefficient. Furthermore, this theory has also been extended to flows consisting
of a multicomponent mixture with multi-step surface reactions. The corresponding
reaction rate expressions and the slip boundary conditions have been established for
these situations.

The study further shows that the application of Nocilla’s model for gas-surface
interaction is essential, and that it clarifies the misconception embedded in the
formulation leading to the widely used, albeit incorrect, Motz–Wise formula for
surface reaction rates. The magnitude of the relative error introduced by using Motz–
Wise formula is proportional to the Knudsen number, which is of the same order of
the sticking coefficient, as indicated in (4.9). Furthermore, the rigorous mathematical
solution of the Boltzmann equation in the Knudsen layer enables us to distinguish the
difference between the surface temperature, the slip temperature and the temperature
of the molecules striking the surface, and thereby clarify the role of the Knudsen layer
in modifying the temperature-sensitive sticking coefficient. The magnitude of such a
modification can be up to O(1), depending on the activation energy of the surface
reaction, the surface temperature and the Knudsen number, as indicated in (4.23).

The present study is based on the assumption of small sticking coefficient and
flow Mach number, which together allow us to linearize the Boltzmann equation
and facilitate analytical solutions. For situations of strong surface reactions, as for
example in the case of strong vapour condensation causing the so-called condensation
shock (Kogan 1973), the sticking coefficient κ is close to unity and the linearization
assumption is not valid any more (Kogan & Makashev 1971). It is of interest to
extend the present theory to such situations of strong surface reactions.

This research was supported by the US Air Force Office of Scientific Research
under the technical monitoring of Dr Michael R. Berman.

Appendix A. Selected properties of Jn(x)

The special function Jn(x) was studied by, for example, Laporte (1937), Abramowitz
(1953) and Welander (1954). The following are some useful integration results of Jn(x):∫ y1

0

Jn (y1 − s) ds = Jn+1(0) − Jn+1(y1),

∫ ∞

y1

Jn (s − y1) ds = Jn+1(0), (A 1)∫ y1

0

sJn (y1 − s) ds = Jn+2(y1) − Jn+2(0) + y1Jn+1(0), (A 2)∫ ∞

y1

sJn (s − y1) ds = Jn+2(0) + y1Jn+1(0), (A 3)

where Jn(0) (n is integer) is given by

Jn(0) =

⎧⎪⎨
⎪⎩

√
π/2 n = 0

(m − 1)!/2 n = 2m − 1

1 · 3 · · · (2m − 1)
√

π/2m+1 n = 2m

(m = 1, 2, . . .), (A 4)

while Jn(∞) = 0 for all n.
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Consequently, we have

In ∗ 1 =

∫ ∞

0

Jn(|y1 − s|) ds = 2Jn+1(0) − Jn+1(y1), (A 5)

for example, I−1 ∗ 1 =
√

π − J0(y1) and I1 ∗ 1 =
√

π/2 − J2(y1), and

In ∗ y1 =

∫ ∞

0

sJn(|y1 − s|) ds = 2y1Jn+1(0) + Jn+2(y1), (A 6)

for example, I−1 ∗y1 =
√

π y1 +J1(y1), I1 ∗y1 =
√

π y1/2+J3(y1) and I3 ∗y1 = 3
√

π y1/4+
J5(y1).

There are two useful two-fold integrals:∫ y1

0

∫ y ′
1

0

g(s)J0(y
′
1 − s) ds dy ′

1 = −
∫ y1

0

g(s)J1(y1 − s) ds + J1(0)

∫ y1

0

g(s) ds, (A 7)∫ y1

0

∫ ∞

y ′
1

g(s)J0(s − y ′
1) ds dy ′

1 =

∫ ∞

y1

g(s)J1(s − y1)ds + J1(0)

∫ y1

0

g(s) ds. (A 8)

Appendix B. Numerical solution of the integral equations system (3.47), (3.51)
and (3.52)

The Wiener–Hopf method is generally used to solve the Fredholm-type integral
equations with semi-infinite integration limits (Polyanin & Manzhirov 1998). Standard
albeit involved solution procedures are required. The disadvantage of this method
is that it is difficult to be extended to integral equations consisting of two or more
unknown variables, such as (3.47), (3.51) and (3.52). Consequently an approximate
method is used instead to obtain numerical results, with reasonable accuracy.

We recognize that the integral kernels in these equations consist of the special
functions Jn(x), which is a monotonic function decreasing rapidly with increasing
x, and that the unknown variables are all bounded functions in [0, ∞). Since our
purpose is to find the solutions of (3.47), (3.51) and (3.52) at y1 = 0, we can use∫ L

0
Jn(|y1 − s|)f (s) ds to replace

∫ ∞
0

Jn(|y1 − s|)f (s) ds in the integral equations with
satisfactory accuracy as long as L is large enough. Consequently, we transform the
singular integral equations defined within a semi-infinite domain into regular ones
defined within the finite length domain.

Following Cercignani & Daneri (1963) and using (3.47) as an example to explain
our numerical method, we have the discrete integral equations with constant step size
δ =L/N , as follows

gν [(n − 1/2)δ] =

N∑
m=1

{∫ mδ

(m−1)δ

L1[(n − 1/2)δ, s] ds

}
gν[(m − 1/2)δ]

+

N∑
m=1

{∫ mδ

(m−1)δ

M1[(n − 1/2)δ, s] ds

}
gθ [(m − 1/2)δ]

− Y1[(n − 1/2)δ], n = 1, 2, . . . , N, (B 1)

gθ [(n − 1/2)δ] =

N∑
m=1

{∫ mδ

(m−1)δ

L2[(n − 1/2)δ, s] ds

}
gν[(m − 1/2)δ]

+

N∑
m=1

{∫ mδ

(m−1)δ

M2[(n − 1/2)δ, s] ds

}
gθ [(m − 1/2)δ]

− Y2[(n − 1/2)δ], n = 1, 2, . . . , N, (B 2)
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where we have used L1(y1, s), L2(y1, s), M1(y1, s) and M1(y1, s) to represent the integral
kernels in the corresponding operators. The terms in the brackets in (B 1) and (B 2)
consist of the integral (n is integer):

∫ jδ

(j−1)δ

Jn[|(i − 1/2)δ − s|] ds =

⎧⎨
⎩

2Jn+1(0) − 2Jn+1(δ/2), i = j,

Jn+1[|i − j |δ − δ/2] − Jn+1[|i − j |δ + δ/2], i �= j.

(B 3)
Consequently, we have the following simultaneous matrix equations

gν = L1 gν + M1 gθ − Y 1, (B 4)

gθ = L2 gν + M2 gθ − Y 2, (B 5)

in which the unknown vector gν and the constant vector Y 1 are respectively given by

gν =

[
gν

(
1

2
δ

)
, gν

(
3

2
δ

)
, gν

(
5

2
δ

)
, . . . gν

(
nδ − 1

2
δ

)]T

, (B 6)

Y 1 =

[
Y1

(
1

2
δ

)
, Y1

(
3

2
δ

)
, Y1

(
5

2
δ

)
, . . . Y1

(
nδ − 1

2
δ

)]T

, (B 7)

where L1 is an N × N constant matrix consisting of elements like
∫ mδ

(m−1)δ
L1[(n −

1/2)δ, s]ds. Similarly, we have other vectors gθ and Y 2 as well as the constant
matrices L2, M1 and M2. Solving (B 4) and (B 5), we obtain the solutions for gν and
gν in terms of their discrete points in [0, L]. It is found that very coarse mesh grids
with L � 10 and δ � 0.05 are good enough to yield satisfactory numerical results.
The following are the final numerical results of the unknown variables at y1 = 0:

gν(0) = 0.39, gτ (0) = −0.77. (B 8)

Similarly, for (3.51) and (3.52), we have

hν(0) = 0.62, hθ (0) = 0.17; (B 9)

and

δi + δj = 0.1 : qν(0) = 0.634, qθ (0) = 0.129; (B 10)

δi + δj = 0.5 : qν(0) = 0.646, qθ (0) = 0.072; (B 11)

δi + δj = 2.5 : qν(0) = 0.655, qθ (0) = 0.028; (B 12)

δi + δj = 12.5 : qν(0) = 0.658, qθ (0) = 0.007. (B 13)
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